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Abstract

We consider the problem of routing traffic to optimize the performance of a congested net-
work. We are given a network, a rate of traffic between each pair of nodes, and a latency function
for each edge specifying the time needed to traverse the edge given its congestion; the objective
is to route traffic such that the sum of all travel times—the total latency—is minimized.

In many settings, including the Internet and other large-scale communication networks,
it may be expensive or impossible to regulate network traffic so as to implement an optimal
assignment of routes. In the absence of regulation by some central authority, we assume that
each network user routes its traffic on the minimum-latency path available to it, given the
network congestion caused by the other users. In general such a “selfishly motivated” assignment
of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the
cost of decreased network performance.

In this paper we quantify the degradation in network performance due to unregulated traffic.
We prove that if the latency of each edge is a linear function of its congestion, then the total
latency of the routes chosen by selfish network users is at most % times the minimum possible
total latency (subject to the condition that all traffic must be routed). We also consider the
more general setting in which edge latency functions are assumed only to be continuous and
nondecreasing in the edge congestion. Here, the total latency of the routes chosen by unregulated
selfish network users may be arbitrarily larger than the minimum possible total latency; however,
we prove that it is no more than the total latency incurred by optimally routing twice as much
traffic.

1 Introduction

A fundamental problem arising in the management of large-scale traffic and communication net-
works is that of routing traffic in order to optimize network performance. One problem of this
type is the following: given the rate of traffic between each pair of nodes in a network, find an
assignment of traffic to paths so that the sum of all travel times (the total latency) is minimized.
A difficult aspect of this problem is that the amount of time needed to traverse a single link of a
network is typically load-dependent, that is, the common latency suffered by all traffic on the link
increases as the link becomes more congested.

In practice, it is often difficult or even impossible to impose optimal or near-optimal routing
strategies on the traffic in a network, and thus network users are free to act according to their own
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interests, without regard to overall network performance. For example, existing Internet protocols
place little restriction on how network traffic is routed, allowing network users to make decisions in
a selfish or even malicious manner [5]. The central question of this paper is how much does network
performance suffer from this lack of requlation?

As a first step toward formalizing this question mathematically, we assume that, in the absence of
network regulation, users act in a purely selfish (but not malicious) manner. Under this assumption,
we can view network users as independent agents participating in a non-cooperative game and expect
the routes chosen by users to form a Nash equilibrium in the sense of classical game theory [28].
In other words, we assume that each agent uses the minimum-latency path from its source to its
destination, given the link congestion caused by the rest of the network users. It is well-known that
Nash equilibria do not in general optimize social welfare; perhaps the most famous example is that
of “The Prisoner’s Dilemma” [12, 28]. We are then interested in comparing the total latency of a
Nash equilibrium with that of the optimal assignment of traffic to paths.

This line of research was recently initiated by Koutsoupias and Papadimitriou [22], who both
considered network routing as a non-cooperative game (although in a different model than ours,
and only for two-node networks) and proposed the worst-case ratio of the social welfare (suitably
defined) achieved by a Nash equilibrium and by a socially optimal set of strategies as a measure of
the performance degradation caused by a lack of regulation. As articulated in [22], this question
studies the cost of the lack of coordination inherent in a non-cooperative game, as opposed to the
cost of a lack of unbounded computing power (studied via approximation algorithms) or the cost of
a lack of complete information (studied via on-line algorithms).

For most of the paper we assume that each agent controls a negligible fraction of the overall
traffic. For example, each agent could represent a car and the network a highway system, or agents
might represent individual packets in a high-bandwidth communication network; an equilibrium
then represents a steady-state in the system (perhaps best achieved in a road network by daily
commuters during rush hour and in a communication network by persistent or long-running ap-
plications). Under this assumption, a feasible assignment of traffic to paths in the network can
be modeled as network flow, with the amount of flow between a pair of nodes in the network
equal to the rate of traffic between the two nodes. A Nash equilibrium in the aforementioned
non-cooperative game then corresponds to a flow where all flow paths between a given source and
destination have the same latency (if a flow does not have this property, some agent can improve its
travel time by switching from a longer flow path to a shorter one). Beckman et al. [3] showed that
if the latency of each network link is a continuous nondecreasing function of the flow on the link,
then a flow corresponding to a Nash equilibrium always exists and moreover all such flows have
the same total latency. Thus, we can study the cost of routing selfishly via the following question:
among all networks with continuous, nondecreasing link latency functions, what is the worst-case
ratio between the total latency of a flow at Nash equilibrium and that of an optimal flow (i.e., a
flow minimizing the total latency)?

Our Results

In networks in which the latency of each edge is a linear function of the edge congestion (a model that
has been the focus of several previous papers [7, 15, 36]), we show that a flow at Nash equilibrium
has total latency at most % that of the optimal flow. We give examples showing that this result is
tight.

We also consider the model in which link latency functions are assumed only to be continuous
and nondecreasing. We first show that the ratio between the total latency of a flow at Nash
equilibrium and that of an optimal flow may be unbounded in this model. We then work toward
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Figure 1: Braess’s Paradox. The addition of an intuitively helpful link can negatively impact all of
the users of a congested network.

bicriteria results; in particular, we compare the total latency of a Nash equilibrium flow with that
of an optimal flow that routes additional traffic between each pair of nodes. Our main result in this
setting is that for any network with continuous nondecreasing latency functions, a flow at Nash
equilibrium has total latency no more than that of an optimal flow forced to route twice as much
traffic. We again give an example showing that our analysis is tight.

Finally, we examine two unrealistic assumptions made in the basic model: first, the assumption
that agents can evaluate the latency of a path with arbitrary precision, and second, that there
are an infinite number of agents each controlling a negligible fraction of the overall traffic. We
define extensions to the basic model and use them to analyze the sensitivity of our results to these
assumptions.

Related Work

Unregulated traffic has been modeled as network flow with all flow paths between a given source-
destination pair having equal latency since the 1950’s [3, 37] (see also Knight [18]). Beckman et
al. [3], observing that such an equilibrium flow is an optimal solution to a related convex program
(see also Section 2), gave existence and uniqueness results for traffic equilibria. Dafermos and
Sparrow [11] were perhaps the first authors interested in computing the equilibrium efficiently, and
many subsequent papers gave increasingly efficient methods for computing equilibria (see [14] for
a survey); others have extended these results to more sophisticated models (see for example [1, 10,
14, 17, 25, 26, 31, 33, 34]).

In the past several decades, much of the work on this model has been inspired by a “paradox”
first discovered by Braess [6] and later reported by Murchland [24] (see also [2] for a non-technical
account). The essence of Braess’s Paradox is captured by the example shown in Figure 1, where the
edges are labeled with their latency functions (each a function of the link congestion x). Suppose
one unit of traffic needs to be routed from s to ¢ in the first network of Figure 1. In the unique
flow at Nash equilibrium, which coincides with the optimal flow, half of the traffic takes the upper
path and the other half travels along the lower path, and thus all agents are routed on a path of
latency % Next suppose a fifth edge of latency 0 (independent of the congestion) is added to the
network, with the result shown in Figure 1(b). The optimal flow is unaffected by this augmentation



(there is no way to use the new link to decrease the total latency) while in the new (unique) flow
at Nash equilibrium, all traffic follows path s — v — w — t; here, the latency experienced by each
individual agent is 2. Thus, the intuitively helpful (or at least innocuous) action of adding a new
zero-latency link may negatively impact all of the agents!

After Braess’s Paradox was discovered (together with evidence of similarly counterintuitive and
counterproductive traffic behavior following the construction of new roads in congested cities [19,
24]), researchers investigated the sensitivity of traffic equilibria to the properties of the underlying
network [16], classified network topologies in which the addition of new links could degrade network
performance [15, 36], and discovered new types of “paradoxes” [13, 35]. More recently, several
papers [20, 21, 27] have investigated a related model in which each agent controls a strictly positive
amount of flow (and there are only finitely many agents); classes of network topologies and latency
functions guaranteeing existence and uniqueness of Nash equilibria are studied by Orda et al. [27],
while Korlis et al. [20, 21] study strategies for adding new edges and/or capacity to a network that
guarantee an improvement in network performance. To the best of our knowledge, however, no
previous work has attempted to quantify the difference in social welfare between equilibrium and
optimal traffic flows.

Finally, the recent paper of Koutsoupias and Papadimitriou [22] is quite similar in spirit to
ours, although their model is fairly different. In [22], a finite number of users share a collection of
parallel links, and each user chooses a distribution on the set of links (specifying the probability
that the agent will route all of its flow on a given link). Each agent wishes to minimize the expected
congestion it will experience, while the global objective is to minimize the expected load on the
most congested edge. We note that a Nash equilibrium in this model consists of a set of mized
strategies (i.e., agents select a distribution on paths) while in our model agents use pure strategies
(i.e., agents choose a single path); however, there is no essential distinction between pure and mixed
strategies under the assumption that each agent controls a negligible amount of traffic. Different
Nash equilibria may have different values in the model of [22], so the worst-case Nash equilibrium
is compared to a globally optimal choice of distributions. Koutsoupias and Papadimitriou obtain
tight results in two-node, two-link networks and partial results for two-node networks with three
or more parallel links.

Equilibria in Other Settings

Braess’s Paradox is not particular to traffic in networks; perhaps the most compelling analogue
occurs in a mechanical network of strings and springs, constructed by Cohen and Horowitz [7] and
shown in Figure 2. In this device, one end of a spring is attached to a fixed support, and the other
end to a string. A second identical spring is hung from the free end of the string and carries a heavy
weight. Finally, strings are connected (with some slack) from the support to the upper end of the
second spring and from the lower end of the first spring to the weight. Assuming that the springs
are ideally elastic, the stretched length of a spring is a linear function of the force applied to it.
We may thus view the network of string and springs as a traffic network, where forces correspond
to flows and physical distance corresponds to latency. With a suitable choice of string and spring
lengths and spring constants, the equilibrium position of this mechanical network is described by
Figure 2(a). Contrary to intuition, severing the taut string causes the weight to rise, as shown in
Figure 2(b); this corresponds to deleting the zero-latency arc of Figure 1(b), thereby obtaining the
network of Figure 1(a) with its improved Nash equilibrium.

On the other hand, our result for traffic equilibria in networks with linear latency functions
provides a quantitative limit on the extent to which this phenomenon can occur. In particular, we
show that our result implies that for any system of strings and springs carrying a single weight, the
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Figure 2: Strings and springs. Severing a taut string results in the rise of a heavy weight.

distance between the support and the weight after severing an arbitrary collection of strings and
springs is at least % times the original support-weight distance.

Further examples of analogous phenomena have been exhibited in two-terminal electrical net-
works [7] (where our results give analogous bounds on the largest possible increase in conductivity
obtainable by removing conducting links) and queuing networks [8].

Organization

The paper is structured as follows. In Section 2 we give a formal definition of our network model
and of flows at Nash equilibrium, and state several lemmas needed for our main results. In Section 3
we prove our main bicriteria result for networks with general edge latency functions. In Section 4
we prove a stronger and technically more involved result for networks with linear edge latency
functions. Section 5 considers several extensions to the basic model.

2 Preliminaries

2.1 Model

We consider a directed network G = (V, E) with vertex set V', edge set E, and k source-destination
vertex pairs {si,t1},...,{sk,tx}. We denote the set of (simple) s;-t; paths by P;, and define
P = UiP;. A flowis a function f : P — RT; for a fixed flow f we define fo = > p. cp fr. We
associate a finite and positive rate r; with each pair {s;,t;}, the amount of flow with source s; and
destination ¢;; a flow f is said to be feasible if for all 7, > pep, /P = 1i. Finally, each edge e € E' is
given a load-dependent latency function that we denote by £.(-). For each e € E, we assume that
{. is nonnegative, differentiable!, and nondecreasing. We will call the triple (G,r, /) an instance.

"We make this assumption for simplicity only. All of our results hold, with minor modifications to the proofs,
under the weaker assumption of continuity.



The latency of a path P with respect to a flow f is defined as the sum of latencies of the edges in
the path, denoted by £p(f) = > .cple(fe). We define the cost C(f) of a flow f in G as the total
latency incurred by f, i.e.,

Cf)=">_tp(f)fr.

Pep

By summing over the edges in a path P and reversing the order of summation, we may also write

C(f) - ZeEE ge(fe)fe'

2.2 Flows at Nash Equilibrium

We wish to consider flows that represent an equilibrium among many non-cooperative agents—i.e.,
flows that behave “greedily” or “selfishly”, without regard to their overall cost. Intuitively, we
expect each unit of such a flow (no matter how small) to travel along the minimum-latency path
available to it, where latency is measured with respect to the rest of the flow; otherwise, this flow
would reroute itself on a path with smaller latency. We formalize this idea in the next definition.

Definition 2.1 A flow f in G is at Nash equilibrium if for all i € {1,...,k}, P, € P;, and
d €0, fp,], we have £p, (f) < €p,(f), where

3 fp=9 if P =P
fp=4q fp+9d if P=D,
fp if P ¢ {P1, P}

Letting 6 tend to 0, continuity and monotonicity of the edge latency functions give the following
useful characterization of a flow at Nash equilibrium, occasionally called a Wardrop equilibrium [17]
or Wardrop’s Principle [35, 36] in the literature, due to an influential paper of Wardrop [37].

Lemma 2.2 A flow f is at Nash equilibrium if and only if for everyi € {1,...,k} and Py, P, € P;
with fPl > 0; ePl(f) < €P2(f)

In particular, if f is at Nash equilibrium then all s;-t; flow paths (i.e., s;-t; paths to which f
assigns a positive amount of flow) have equal latency, say L;(f). Thus, we can express the cost
C(f) of a flow f at Nash equilibrium in a particularly nice form.

Lemma 2.3 If f is a feasible flow at Nash equilibrium, then
C(f) =Y Li(f)ri.
i=1

Remark. Our definition of a flow at Nash equilibrium corresponds to an equilibrium in which each
agent chooses a single path of the network (a pure strategy), whereas in classical game theory a Nash
equilibrium is typically defined via mized strategies (in which an agent may choose a probability
distribution over pure strategies) [28]. However, since in our model each agent carries a negligible
fraction of the overall traffic, these two definitions are essentially equivalent (see [17] for a rigorous
argument).



2.3 A Characterization of Optimal Flows via Non-Linear Programming

We now investigate the properties of an optimal flow—i.e., a flow that minimizes total latency.
Recalling that the cost of a flow f may be expressed C(f) = Y .cple(fe)fe, observe that the
problem of finding the minimum-latency feasible flow in a network is a special case of the following
non-linear program

Min ) ce(fe)

eeE
subject to:
(NLP) > fe=ri Vie{l,... k}
PeP;
fe = Z fP Veec E
PeP:ecP
fP>0 VPP

where in our problem, c.(fe) = le(fe) fe-

For simplicity we have given a formulation with an exponential number of variables, but it is
not difficult to give an equivalent compact formulation (with decision variables only on edges and
explicit conservation constraints) that requires only polynomially many variables and constraints.

Next, we characterize the local optima of (NLP). Intuitively, we expect a flow to be locally
optimal if and only if moving flow from one path to another can only increase the flow’s cost. Put
differently, we expect a flow to be locally optimal when the marginal benefit of decreasing flow
along any s;-t; flow path P is at most the marginal cost of increasing flow along any other s;-t;
path. Finally, since the local and global minima of a convex function on a convex set coincide (see,
e.g., [29, Thm 2.3.4]), this condition should be necessary and sufficient for a flow to be globally
optimal whenever the objective function of (INLP) is convex (e.g., when each edge latency function
is convex).

The following lemma formalizes the preceding discussion. Letting ¢/p(f) = > .cpcL(fe), and
applying the Karush-Kuhn-Tucker Theorem (see, e.g., [29]) to a convex program of the form (N LP),
we obtain the following characterization of optimal flows (for a careful derivation see [3, 11]).

Lemma 2.4 A flow f is optimal for a convex program of the form (NLP) if and only if for every
i€{l,...,k} and P1, P> € P; with fp, >0, cp (f) < cp, (f)-

Remark: To see that this characterization still makes sense under the weaker assumption of
continuous (and not necessarily differentiable) latency functions, define ¢, (z), ¢} (z) to be the left
and right derivatives of c. at z, respectively; since ¢ is assumed to be convex, ¢ and ¢ exist
everywhere. Define ¢f(f) and cp(f) for a path P in the obvious way. Then, the proof of Lemma 2.4
can easily be extended to show that a flow f is optimal in this more general setting if and only if
for any P, P as above, cp (f) < C;Q(f).

The striking similarity between the characterizations of optimal solutions to a convex program
of the form (NLP) and of flows at Nash equilibrium was noticed early on by Beckman et al. [3],
and provides an interpretation of an optimal flow as a flow at Nash equilibrium with respect to a
different set of edge latency functions. More concretely, consider a minimum-latency flow f* for a
convex program of the form (NLP). The flow f* satisfies the conditions of Lemma 2.4, and so by
Lemma 2.2 can be regarded as a flow at Nash equilibrium with respect to latency functions ¢'.



Now consider the special case of (NLP) where c.(f.) has the form f.(f.)fe for each edge e.
Denoting the marginal cost of increasing flow on edge e by £:(fe) = (be(fe)fe) = Le(fe) + LL(fe) fe,
we see that any flow f* at Nash equilibrium with respect to latency functions £* is optimal with
respect to the original latency functions ¢. Interpreting ¢} as a function with one term capturing
per-unit latency and a second term accounting for the degradation in total latency due to increased
congestion, we may say that the only essential difference between an optimal flow and a flow at
Nash equilibrium is that the former conscientiously evaluates the cost of edge use (via £*) in a way
that accounts for the latency experienced by all flow using the edge, while the latter “selfishly”
evaluates edge latency by the per-unit rate /.

Beckman et al. [3] also exploited this similarity between the two characterizations (in particular,
that a flow at Nash equilibrium can be regarded as the optimal solution of a convex program of
the form (N LP)) to prove the existence and essential uniqueness of Nash equilibria. We include a
proof for completeness.

Lemma 2.5 ([3]) A network G with continuous, nondecreasing latency functions admits a feasible
flow at Nash equilibrium. Moreover, if f, f are flows at Nash equilibrium, then c(f) = C(f)

Proof: Set he( fo ¢(t)dt. Since each h, is differentiable with nondecreasing derivative /., each
he is convex. Now con81der the convex program

> he(fe)

eclk
subject to:
(NLP2) d fr=m Vie{l,..., k}
PeP;
Z fp Vee E
PeP:ecP
fp>0 VP e P

and notice that the optimality conditions of Lemma 2.4 for (NLP2) precisely match the charac-
terization of flows at Nash equilibrium in Lemma 2.2. In other words, the optimal solutions for
(NLP2) are precisely the flows at Nash equilibrium for (G,r,¢). Existence of a Nash equilibrium
then follows from the facts that (NLP2) has a continuous objective function and a compact fea-
sible region. Next, suppose f, f are flows in G at Nash equilibrium (and hence global optima for
(NLP2)). By convexity of the objective function of (NLP2), whenever f. # f. the function h,
must be linear between these two values (otherwise any convex combination of f, f would be a
feasible solution for (VL P2) with smaller objective function value) and hence ¢, must be constant
between these two values. This implies that £.(fe) = £e( fe) for all e € E, hence L;(f) = Li( f ) for
all 4, and hence (by Lemma 2.3) C(f) = C(f). B

3 A Bicriteria Result for General Latency Functions

We have already seen (Figure 1(b)) that a flow at Nash equilibrium and a minimum-latency flow
may have different costs. In the next two sections, we analyze the ratio of the cost of a flow at Nash
equilibrium to that of the minimum-latency flow. In this section we work with general (continuous,
nondecreasing) latency functions, while in Section 4 we will specialize to the case of linear latency
functions.
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Figure 3: A Simple Bad Example

For a network G with rate vector r and edge latency functions ¢, admitting an optimal flow
f* and a flow at Nash equilibrium f, we denote the ratio g((f’i)) by p = p(G,r,{); note that p is
well-defined by Lemma 2.5.

We begin with some simple negative results. Recall in the canonical example demonstrating
Braess’s Paradox (Figure 1) a flow at Nash equilibrium has total latency 2 while the optimal flow
has total latency %; thus, in the above notation, p = % in this particular instance. In fact, it
is easy to construct an even simpler example (still with linear latency functions) with ratio %.
In the network shown in Figure 3, with a single source-destination pair and rate 1, the flow at
Nash equilibrium puts the entire unit of flow on the lower link (with a total latency of 1) while
the minimum-latency flow spreads flow evenly across the two links, thereby incurring a cost of %.
Thus, p = % in this simple instance as well. (In the next section we will prove that this is the worst
possible ratio for instances with linear latency functions.)

Unfortunately, the ratio can be much worse when non-linear latency functions are allowed. For
a positive integer k, we extend the example of Figure 3 by giving the lower link a latency function of
z¥ (other input data remains unchanged). The flow at Nash equilibrium again places the entire unit
on the lower link, incurring a cost of 1, while the optimal flow assigns (k -+ 1)~/* units to the lower
link and the remainder to the upper link. This solution has a total latency of 1 — k- (k + 1)_(k+1)/ k.
which tends to 0 as k — oo. Thus, assuming only continuity and monotonicity of the edge latency
functions, p cannot be bounded above.

On the other hand, this example does not rule out interesting bicriteria results. Toward this
end, we compare the cost of a flow at Nash equilibrium to an optimal flow feasible for increased
rates. In the example above, an optimal flow feasible for rate r > 1 assigns the additional flow
to the upper link, now incurring a cost that tends to r — 1 as k — oo. In particular, for any
k an optimal flow feasible for twice the rate (r = 2) has total latency at least that of the flow

).

at Nash equilibrium (feasible for the original rates). Our main result of this section is a proof
of the surprising generalization of this result to any network with continuous, nondecreasing edge
latencies.

Theorem 3.1 If f is a flow at Nash equilibrium for (G,r,£) and f* is feasible for (G,2r, (), then
C(f) <C(f).

Proof: Suppose f, f* satisfy the hypotheses of the theorem. For i = 1,...,k, let L;(f) be the
latency of an s;-t; flow path (of f), so that C(f) =), Li(f)r; (see Lemma 2.3). We seek a set of
latency functions £ that on one hand approximates the original ones (in the sense that the cost of a
flow with respect to latency functions £ is close to its original cost) and, on the other hand, allows

us to easily lower bound the cost (with respect to ¢) of any feasible flow. With this goal in mind,



we define new latency functions ¢ as follows:

_ Ee(fe) if x < fe
belz) { t(z) ifz>f.

First we compare the cost of the flow f* under the new latency functions ¢ to its original cost
C(f*). For any e, l.(x) — £(x) is zero for x > f. and bounded above by £.(f.) for z < f., so
2(le(x) — le(z)) < Le(fe)fe for all z > 0. Thus, the difference between the new cost (w.r.t. £) and
the old cost (w.r.t. £) can be bounded as follows:

D LN O = Y Fle(f2) = Le(£)

eckE

< S t(ffe

eckE

= C(f):

In other words, evaluating f* with latency functions ¢ (rather than /) changes its cost by at most
an additive C(f) factor.

On the other hand, if fo denotes the zero flow in G, then by construction ¢p(fo) > L;(f) for
any P € P;. Since /. is nondecreasing for each e, it follows that £p(f*) > L;(f) for any P € P;.
Thus, the cost of f* with respect to £ can be bounded below in the following manner:

Mol = DD Lihfp
7

i Pep;

= S aLi(f) = 20(h).
Combining these two results we obtain the theorem:
C(f7) = > Ip(f)fp—C(f)
P

> 20(f) = C(f) = C(f).
|

The same proof also shows the following more general result.

Theorem 3.2 If f is a flow at Nash equilibrium for (G,r,{) and f* is feasible for (G, (14 ~)r, ),
then C(f) < %C’(f*)

Referring back to the bad example at the beginning of the section, we can see that Theorem 3.2
is essentially tight for all values of . More precisely, for any € > 0 one can take k sufficiently large
to obtain an instance where the optimal flow feasible for rate (1 + ) — € has cost strictly less than
v (recall the cost of the flow at Nash equilibrium for the original rates is 1) and the optimal flow
feasible for rate 1 4 v has cost at most v + €.

4 A Worst-Case Ratio of % for Linear Latency Functions

Perhaps the simplest model of interest is that of a network with latency functions linear in the
amount of flow on an edge. In this section, we consider the case where for each edge e € F,

10



le(fe) = acfe + be for some ae,be > 0. This is the setting in which Braess’s paradox was originally
discovered [6, 24], and several subsequent papers focused entirely on this model [15, 36]. In addition,
we will see that the mechanical networks of strings and springs mentioned in the Introduction can
be modeled as traffic networks with linear latency functions.

We have already seen (Figures 1 and 3) two examples with linear latency functions for which p,
the ratio of the cost of a flow at Nash equilibrium and the cost of an optimal flow, is %. Our main
result for this section (Theorem 4.5) is a matching upper bound for networks with linear latency
functions. Our proof techniques build on those of the previous two sections, the primary extension
being a more refined approach to lower bounding the cost of an optimal flow.

The results of Section 2 have particularly simple and useful forms in the special case of linear
latency functions. First, the total latency of a flow f is given by Y., acf2 + befe; since a. > 0
for all e, (NLP) is a convex (quadratic) program and thus Lemma 2.4 characterizes its optimal
solutions. Also, in the notation of subsection 2.3, if f.(f.) = aefe + be, then £%(f.), the marginal
cost of increasing flow on e, is simply 2a.f. + b.. For convenience, we summarize this discussion
together with specialized versions of Lemmas 2.2 and 2.4 in the following lemma.

Lemma 4.1 Suppose G is a directed network with k source-sink pairs and with edge latency func-
tions e = aefe + be for each e € E. Then,

(a) a flow f is at Nash equilibrium in G if and only if for each i and P, P’ € P; with fp > 0,

Za€f€+b€ S Za€f€+b€

ecP ecP’
(b) a flow f* is (globally) optimal in G if and only if for each i and P, P' € P; with f}, >0,

ZQaefj—l—be < Z 2a¢ fF + be.

ecP eeP’

As an aside, we note that Lemma 4.1 immediately gives a simple proof of the following non-
trivial result regarding networks in which the latency of each edge is proportional to its congestion;
other properties of this special case have been investigated in the context of electrical networks [4, 9].

Corollary 4.2 Let G be a network in which each edge latency function is of the form lc(f.) = acfe.
Then for any rate vector r, a flow feasible for (G,r,f) is optimal if and only if it is at Nash
equilibrium.

Proof: A feasible flow for such an instance satisfies the conditions of Lemma 4.1(a) if and only
if it satisfies the conditions of Lemma 4.1(b). B

A second corollary of Lemma 4.1 will play a crucial role in our proof of the main theorem of
this section.

Lemma 4.3 Suppose (G,r,0) has linear latency functions and f is a flow at Nash equilibrium.
Then,

(a) the flow f/2 is optimal for (G,r/2,¢)

(b) for each i = 1,...,k, the common marginal cost of increasing flow on an s;-t; flow path of
f/2 equals the common latency of an s;-t; flow path of f.
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Proof: For part (a), simply note that if f satisfies the conditions of Lemma 4.1(a) for (G, r, ),
then f/2 satisfies the conditions of Lemma 4.1(b) for (G,r/2,¢). For the second part, recall that
all s;-t; flow paths of f have equal latency (see Lemma 2.2) and that if £.(fe) = aefe + be then the
marginal cost of increasing flow on edge e is given by £X(fe) = 2acfe + be. Thus, €5(fe/2) = le(fe)
for any edge e and hence ¢} (f/2) = {p(f) for any path P. B

An outline of the proof of the main theorem is as follows. It will be useful to think about
creating an optimal flow for the instance (G,r,¢) via a two-step process: in the first step, a flow
optimal for the instance (G, 7/2, /) is sent through G, and in the second step this flow is augmented
to one optimal for (G,r,¢) (note that this augmentation may increase or decrease the amount of
flow on any given arc). We will show that the first flow has cost at least C(f) and that the
augmentation has cost at least %C (f), where f is some flow at Nash equilibrium.

We will see in the proof of Theorem 4.5 that the first lower bound follows easily from Lemma 4.3(a),
but the second (for the cost of the augmentation, given that the first flow has already been routed)
requires more work, and in particular the following lemma. Intuitively, the lemma simply claims
that the per-unit cost of increasing the amount of flow through a network is at least the marginal
cost of increasing flow on any path with respect to the current optimal flow.

Lemma 4.4 Suppose (G,r,{) is an instance with linear latency functions for which f* is an optimal
flow. Let L¥(f*) be the common marginal cost of increasing flow on an s;-t; flow path P of f*, so
that 05(f*) = LI (f*) for each such P. Then for any 6 > 0, a feasible flow for the problem instance
(G, (14 0)r,£) has cost at least

k
C(f*)+8> Li(f*)rs
=1

Proof : The marginal cost of increasing flow on each s;-t; flow path, L¥(f*), is well-defined for each
i by Lemma 4.1(b). If we knew that each L} was nondecreasing in 7;, then routing a additional
units of flow from s; to ¢; would cost at least - L7 (f*) and the lemma would then follow easily by
summing over s;-t; pairs. Although it is intuitively plausible that marginal costs are increasing in
the amount of flow (it is certainly true for each edge individually), the proof requires a little work.
Formally, fix § > 0 and suppose f is feasible for (G, (1 + d)r,¢). In general f. may be larger or
smaller than f. For any e € E, convexity of the function £c(fe)fe = acf> + befe implies that

Ce(fe)fe 2 Le(f) I + (fe = FONE(SE)-

In essence, this inequality states that estimating the cost of changing the flow value on edge e to f.
by (fe—fX)05(f*) (i.e., by the marginal cost of flow increase at f times the size of the perturbation)
only underestimates the actual cost of an increase (when f. > fJ) and overestimates the actual
benefit of a decrease (when f, < f7).

Thus,
C(f) = de(fe)fe
eclk
> LU+ S e )
ecE ecl
k
= CUf+ D) olf)(fp — f7)
=1 PeP;
k
= O+ Li(f) Y (fp—fp)
i=1 PeP;
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k
= C(f)+06) Li(f)m
=1

|

We remark that Lemma 4.4 and its proof remain valid in much more general settings, for
example when all the edge latency functions are convex.

We are now prepared to prove the main theorem.

, : 4
Theorem 4.5 If (G,r,() has linear latency functions, then p(G,r,{) < 3.

Proof: Let f be a flow in G at Nash equilibrium. Let L;(f) be the latency of an s;-t; flow path,
so that C(f) = >, Li(f)r: (see Lemma 2.3). By Lemma 4.3(a), f/2 is an optimal solution to the
instance (G,7/2,¢). Moreover, by Lemma 4.3(b), Lf(f/2) = L;(f) for each ¢ (in words, marginal
costs w.r.t. f/2 and latencies w.r.t. f coincide); this establishes the necessary connection between
the cost of augmenting f/2 to a flow feasible for (G, r, ) and the cost of a flow at Nash equilibrium,

f.
Taking 6 = 1 in Lemma 4.4, we find that the cost of any flow f* feasible for (G, r,¥¢) satisfies

T

k
C(f) = CU+Y Lif/2)5
i=1

k

> O(f/2)+ 5 Ll

=1
= CU/2)+ 500

Finally, it’s easy to lower bound the cost of f/2:

C(f/2) - Ziaefg"i_%befe

€

izaefg +befe

v

1
= ZCU)

and thus C(f*) > %C(f). ]

We note that the analysis of this section can be extended to prove that in any network G with
rate vector r where for some k, £, = a.z* + b, for each e, p(G,7,¢) < (1 — k- (k + 1)_(k+1)/k)_1.
The example at the beginning of Section 3 shows that this result is tight.

Consequences for Strings and Springs

We now return to the mechanical networks of strings and springs mentioned in the Introduction
and Figure 2. Viewing the support as a source and the suspended weight as a sink, with each string
and spring as an arc, the equilibrium position of the mechanical device can be modeled as a Nash
equilibrium in a traffic network G, with the support-weight distance corresponding to the common
latency of any source-sink flow path. Strings (as perfectly inelastic objects) are modeled as links
with constant latency functions while (perfectly elastic) springs correspond to links with latency
functions that include a term of the form az. Severing a string or spring corresponds to deleting
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an edge from a traffic network; thus any realizable equilibrium of the mechanical network (after
possibly destroying some of its constituent parts) corresponds to a Nash equilibrium in a subgraph
of the corresponding traffic network G.

Although Theorem 4.5 is concerned with the total latency of flows (a concept with no natural
analogue in our mechanical networks), we can use the result in the following way. By Theorem 4.5,
every traffic flow in G (and in particular every Nash equilibrium in a subgraph of G) has total
latency at least % times that of a Nash equilibrium f in G. By Lemma 2.3, it follows that if the
common latency of every flow path of f is L and f* is a flow at Nash equilibrium in a subgraph of
G, then the common latency of every flow path of f* is at least %L. Reinterpreting this result for
networks of strings and springs, we obtain the following corollary of Theorem 4.5.

Corollary 4.6 In any network of strings and springs carrying a single weight with support-weight
distance D, the support-weight distance after severing an arbitrary collection of strings and springs
s at least %D.

5 Extensions

In this section we extend the basic model in several ways, as the model of flow considered thus
far suffers from several drawbacks. First, in practice agents cannot evaluate path latency exactly,
only approximately. Subsection 5.1 extends the notion of a flow at Nash equilibrium and Theo-
rem 3.1 to this setting. Second, our basic model represents a scenario with infinitely many agents
each controlling an infinitesimal amount of flow, while in practice we expect to encounter a finite
number of agents, each controlling a strictly positive amount of flow. In subsection 5.2 we prove
an analogue of Theorem 3.1 for the case of finitely many agents, provided each agent can route its
flow fractionally over any number of paths. In subsection 5.3 we show that such an assumption is
essentially necessary, in that no bicriteria result analogous to Theorem 3.1 holds when there are
only finitely many agents, each of whom must route its flow on a single path. Our results can
also be extended to a broader class of games (including games without the structure provided by a
network); this direction of research is pursued in a companion paper [32].

5.1 Flows at Approximate Nash Equilibrium

It is unreasonable to expect agents to be able to evaluate the latency of different paths with arbitrary
precision. We next investigate the sensitivity of our results to this assumption. We suppose that
an agent can only distinguish between paths that differ significantly in their latency (say by more
than a (1 + ¢) factor for some ¢ > 0). Our definition of a flow at e-approzimate Nash equilibrium is
then an obvious modification of Definition 2.1:

Definition 5.1 A flow f in G is at e-approximate Nash equilibrium if for all i € {1,...,k},
P, P, € P;, and § € [0, fp,], we have £p,(f) < (14 €)lp,(f), where

) fp—35 ifP=P
fp=4 fp+9d if P= Py
fr if P ¢ {P, P}

The analogue of Lemma 2.2 is then:

Lemma 5.2 A flow f is at e-approzimate Nash equilibrium if and only if for every i € {1,...,k}
and Py, Py, € P; with fpl > 0, fpl (f) < (1 + E)EPQ(f).
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Following the method of proof for Theorem 3.1, we can show the following result.

Theorem 5.3 If f is at e-approzimate Nash equilibrium for (G,r,£) and f* is feasible for (G,2r, (),
then C(f) < (1+¢€)C(f*).

Proof: Suppose f, f* satisfy the hypotheses of the theorem. For i = 1,...,k, let L;(f) be the
minimum latency of any s;-t; path (w.r.t. f); since f is at e-approximate Nash equilibrium, every
si-t; flow path has latency at most (1 + €)L;(f) and hence C(f) < (1+¢€) >, Li(f)r:.

As in the proof of Theorem 3.1, define a new set of latency functions £ by

0 ge(fe) ifnge
bele) = { t(r) x>,

As before, the cost of a flow with respect to ¢ exceeds its cost with respect to ¢ by at most an
additive factor of C'(f). The rest of the proof of Theorem 3.1 can be imitated to give the bound
C(f) < %C (f*); obtaining the better bound of the theorem statement requires the following
slightly more involved argument.

First, noting that £.(x) > £.(f.) for any e and = > 0, we may lower bound C(f*) as follows:

() = SRS -Cl)

eckE

> de(f)(fe* - fe)'

eckE

Summing over paths instead of edges we obtain

o) = SN ee(fp - fr)

i PEP;

> Y L) D> (fp—fr)
; PeP;

= ZLz‘(f)Tz‘

S (;(f)

- 1+4e€

as desired. W

5.2 Finitely Many Agents: Splittable Flow

Our basic model makes the unrealistic assumption that flow is comprised of infinitely many inde-
pendent agents. In this subsection we extend the basic model to the case of finitely many agents,
each of whom controls a strictly positive amount of flow. In this subsection we allow an agent to
split flow along any number of paths; the next subsection investigates the case where each agent
must route all of its flow on a single path.

We are given a network GG with continuous nondecreasing latency functions ¢ as before, and
in addition k agents. We assume that agent ¢ intends to send r; units of flow from source s;
to destination t;. Distinct agents may have identical source-destination pairs. We continue to
denote an instance by (G,r,¢), and we call the instance finite splittable. A flow f now consists
of k functions, f® : P; — RT for agent i. For a flow f, we denote by C;j(f) the total latency
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experienced by agent 4; thus, Ci(f) = >_pep, Ep(f)f](j). As usual, a flow is at Nash equilibrium if

no agent can decrease the latency it experiences by rerouting its flow. In this setting, a flow f is at

Nash equilibrium if and only if for each i, f) minimizes C;(f) given fU) for j # i. We will focus

on the case where for each edge e, x - £.(z) is a (weakly) convex function; under this assumption,

results of Rosen [30] imply that a flow at Nash equilibrium must exist and will be essentially unique.
Our main result for this model is an analogue of Theorem 3.1.

Theorem 5.4 If f is at Nash equilibrium for the finite splittable instance (G,r, ) with - £c(z)
convex for each e, and f* is feasible for the finite splittable instance (G,2r,0), then C(f) < C(f*).

Proof: Fix f, f* and define latency functions ¢ as in the proofs of Theorems 3.1 and 5.3. As in
previous proofs, evaluating f* with latency functions £ (rather than £) changes its cost by at most
an additive C(f) factor.

We claim that f is optimal for the instance (G,r, ). We proceed by contradiction, showing

that if f is not optimal for (G,r,¢) then f fails to be at Nash equilibrium for (G, r,¢). Suppose
f is not optimal; since the instance (G,7,f) defines a convex optimization problem of the form
(NLP), there is an agent i, two paths P, P» € P;, and a § > 0 such that moving ¢ units of flow
from P; to P, yields a new flow with cost (w.r.t. £) strictly less than that of f (cf., subsection 2.3).
Our goal is to show that the same local move will be beneficial for agent ¢ in the instance (G, r,?).
We may assume that Py, P, are disjoint (otherwise, the following argument may be applied to the
symmetric difference of P; and P»). The benefit (w.r.t. £) of removing ¢ units of flow from path P;
is then 0 - £p, (f) = 6-£p,(f) (since Lc(z) = £.(f.) when = < f.) while the cost (w.r.t. £) of adding &
units of flow to P is Y, p, [le(fe + ) (fe +0) — Le(fe) fe]; we are assuming that the former exceeds
the latter. On the other hand, agent i is capable of making an identical local change to f() in
the instance (G, /), and doing so provides a benefit to agent i of at least - £p, (f) w.r.t. £ (since

latency functions are nondecreasing) and a cost (w.r.t. £) of

D lelfe+ (D +8) = Le(f) T <D Mol fe + 0)(fe +8) — Le(fe) /o]

ecPy eePsy

since f. is nondecreasing and fe(i) < fe for each e. Thus, moving § units of flow from path P;
to path P» yields a better outcome for agent i in the instance (G,r,¢), so f fails to be at Nash
equilibrium for (G, r, ).

We have determined that any flow feasible for (G, r, £) must have cost at least C(f). Since every
latency function is nondecreasing, it follows that any flow feasible for (G,2r, /) (and in particular
f*) must have cost at least 2C(f) (such a flow may be expressed as the sum of two flows feasible
for (G,r,£), and the cost of their sum is at least the sum of their individual costs). Since the cost
of f* w.r.t. £ exceeds its cost w.r.t. £ by at most C(f), the theorem follows. B

Theorem 3.1 can be regarded as the limiting case of the above theorem, as the number of agents

tends to infinity and the amount of flow controlled by each agent tends to 0.

5.3 Finitely Many Agents: Unsplittable Flow

In this subsection we continue our investigation of selfish routing with finitely many agents, each
controlling a non-negligible amount of flow. It is easy to imagine scenarios in which agents cannot
route flow on several different paths, but instead must select a single path for routing. Our previous
results have made crucial use of the “infinitely divisible” nature of flow, and we next show that this
assumption is essentially necessary.
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Figure 4: A Bad Example for Unsplittable Flow

Consider an instance (G,r,¢) as in the previous subsection (with & agents and the ith agent
controlling r; units of flow), but with the additional constraint that each agent selects a single
path on which to route all of its flow. We call such an instance finite unsplittable. Adapting the
definition of the previous subsection to this new setting, a flow f (now consisting only of k paths)
is at Nash equilibrium if and only if for each i, agent ¢ routes its flow on a path minimizing ¢p(f)
(with P ranging over all paths in P;), given the paths chosen by the other k — 1 agents.

We first consider a simple example showing that a flow at Nash equilibrium may have cost
arbitrarily larger than that of an optimal flow. Consider the network given in Figure 4, and
suppose there are two agents, each of whom has source s, destination ¢, and one unit of flow to
send; € > 0 is arbitrary. In the optimal solution, one agent chooses path s — v — t and the other
s — w — t; the cost of this solution is less than 4 (for any € > 0). On the other hand, a solution
with one agent choosing path s — v — w — ¢t and the other routing on the s — t link is a flow at
Nash equilibrium with cost greater than %; by choosing e arbitrarily small this cost is arbitrarily
large, and hence arbitrarily more costly than optimal.

In light of the example at the beginning of Section 3, such a result is hardly surprising; however,
this example easily extends to show that bicriteria statements analogous to the Theorems 3.1 and 5.4
are false when we require agents to route flow unsplittably. In particular, for any positive integer ¢,
consider the network G consisting of 2¢+2 vertices arranged in a path s, vy, v, ..., v24,t with edges
along the path alternately having latency functions 5 +iix and 0, a direct s-t link with constant
latency function %, and arcs from s to ve; and from wo;_1 to t with constant latency functions
¢(x) =1 (e.g., ¢ = 1 in Figure 4). As in the previous paragraph, there is a flow at Nash equilibrium
with two agents, each controlling one unit of flow, with cost greater than % On the other hand,
it is possible for ¢ + 1 agents to each send one unit of flow through G, at total cost at most 3¢
(the first agent uses path s — v — ¢, the last s — vy — t, and otherwise the ith agent uses path
§ — Ugi—9 — v9;—1 — t). Letting € tend to 0 for each fixed value of ¢, we see that an optimal flow
can send arbitrarily more flow at arbitrarily less cost than a flow at Nash equilibrium.

In the above bad example, the network has latency functions with unbounded derivatives; in
this situation, routing a strictly positive amount of additional flow on an edge may increase the
latency of that edge by an arbitrarily large amount. This example is of particular interest as
functions of the form ¢(z) = 1/(u — z) have been used in several different models considered in
the literature [20, 21, 23, 27] with the intention of modeling a link with capacity u. However, in
networks where the largest possible change in edge latency resulting from a single agent rerouting
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its flow is bounded above, we can apply the results of subsection 5.1 to derive the following.

Theorem 5.5 Suppose f is at Nash equilibrium in the finite unsplittable instance (G, ¢, ), and for
some a > 1, Le(z +1;) < - Le(z) for alli € {1,...,k},e € E,x €[0,3,,,1;]. Then for any f*
feasible for (G,2r,¢), C(f) < a-C(f*).

Proof : We may interpret f and f* as (fractional) flows feasible for instances (G,r’,¢) and (G, 21, /)
of the original type (i.e., instances in the sense of Sections 2-4), where r} is the total amount of
flow controlled by agents with source s; and destination ¢; in the original instance. The hypotheses
ensure that f is at (o — 1)-approximate Nash equilibrium for (G,r’,¢), so the result follows from
Theorem 5.3. W

For example, in an instance with linear latency functions (say fc(fe) = aefe + be) with be > 0
for all edges e, we may apply Theorem 5.5 with a = 1 + max; 7; - maxe ae/be.
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